*To those who do not know mathematics, it is difficult to get across a real feeling as to the beauty, the deepest beauty, of nature…If you want to learn about nature, to appreciate nature, it is necessary to understand the language that she speaks in.*

The Character of Physical Law (1965)

**Richard Feynman**

This term I have been teaching a new first year undergraduate module, *Mathematics for Computing*, in which I have been trying to impart a little bit of love for mathematics. While we have covered a number of underpinning topics relevant to computer science, such as propositional logic, set theory and number theory, I have also tried to show that there are a multitude of clever little tricks that can make arithmetic and performing seemingly complex calculations that little bit easier. And in doing so, I was reminded of the mathematical prowess of Richard Feynman as well as Hans Bethe, Nobel laureate in physics and Feynman’s mentor during the Manhattan Project. Bethe is one of the few scientists who can make the claim of publishing a major paper in his field every decade of his career, which spanned nearly 70 years; Freeman Dyson called Bethe the “*supreme problem solver of the 20th century.*”

An example of Bethe’s mastery of mental arithmetic was the *squares-near-fifty trick* (taken from *Genius: The Life and Science of Richard Feynman* by James Gleick):

*When Bethe and Feynman went up against each other in games of calculating, they competed with special pleasure. Onlookers were often surprised, and not because the upstart Feynman bested his famous elder. On the contrary, more often the slow-speaking Bethe tended to outcompute Feynman. Early in the project they were working together on a formula that required the square of 48. Feymnan reached across his desk for the Marchant mechanical calculator.*

*
*Bethe said, “It’s twenty-three hundred.”

*Feynman started to punch the keys anyway. “You want to know exactly?” Bethe said. “It’s twenty-three hundred and four. Don’t you know how to take squares of numbers near fifty?” He explained the trick. Fifty squared is 2,500 (no thinking needed). For numbers a few more or less than 50, the approximate square is that many hundreds more or less than 2,500. Because 48 is 2 less than 50, 48 squared is 200 less than 2,500 — thus 2,300. To make a final tiny correction to the precise answer, just take that difference again — 2 — and square it. Thus 2,304.*

Bethe’s trick is based on the following identity:

For a more intuitive geometric proof of this formula, imagine a square patch of land that measures on each side:

Its area is , which is the value we are looking for. As you can see in the diagram above, this area consists of a 50 by 50 square (which contributes the to the formula), two rectangles of dimensions 50 by x (each contributing an area of , for a combined total of ), and finally the small x by x square, which gives an area of , the final term in Bethe’s formula.

While Feynman had internalised an apparatus for handling far more difficult calculations (for which he became famous for at Los Alamos, such as summing the terms of infinite series or inventing a new and general method for solving third-order differential equations), Bethe impressed him with a mastery of mental arithmetic that showed he had built up a huge repertoire of these easy tricks, enough to cover the whole landscape of small numbers. Bethe knew instinctively that the difference between two successive squares is always an odd number (the sum of the numbers being squared); that fact, and the fact that 50 is half of 100, gave rise to the squares-near-fifty trick.

Unfortunately, the skill of mental arithmetic that did so much to establish Bethe’s (as well as Feynman’s) legend was doomed to a quick obsolescence in the age of machine computation — it appears to be a dead skill today.